Vidyavardhini's College of Engineering \& Technology, Vasai
 Department of Computer Engineering
 Academic Year 2020-21

Sub: Discrete Mathematics (CSC303)
Year/Sem:- SE/ Sem III
Max. Marks: 50

Q.No.	Questions	Mark s
1	Which of the following two sets are equal? a) $A=\{1,2\}$ and $B=\{1\}$ b) $A=\{1,2\}$ and $B=\{1,2,3\}$ c) $A=\{1,2,3\}$ and $B=\{2,1,3\}$ d) $A=\{1,2,4\}$ and $B=\{1,2,3\}$	2
2	What is the Cartesian product of $A=\{1,2\}$ and $B=\{a, b\}$? a) $\{(1, a),(1, b),(2, a),(b, b)\}$ b) $\{(1,1),(2,2),(a, a),(b, b)\}$ c) $\{(1, a),(2, a),(1, b),(2, b)\}$ d) $\{(1,1),(a, a),(2, a),(1, b)\}$	2
3	The compound propositions p and q are called logically equivalent if \qquad is a tautology. a) p \square q b) $p \rightarrow q$ c) $\neg(p \vee q)$ d) $\neg p \vee \neg q$	2
4	$p \rightarrow q$ is logically equivalent to \qquad a) $\neg p \vee \neg q$ b) $p \vee \neg q$ c) $\neg p \vee q$ d) $\neg p \wedge q$	2
5	$(p \rightarrow q) \wedge(p \rightarrow r)$ is logically equivalent to \qquad a) $p \rightarrow(q \wedge r)$ b) $p \rightarrow(q \vee r)$ c) $p \wedge(q \vee r)$ d) $p \vee(q \wedge r)$	2
6	$\neg(p \rightarrow q)$ is logically equivalent to \qquad a) $p \leftrightarrow \neg q$ b) $\neg p ~ \Theta q$	2

	c) $\neg p \leftrightarrow \neg q$ d) $\neg q$ Θp	
7	$p \vee q$ is logically equivalent to \qquad a) $\neg q \rightarrow \neg p$ b) $q \rightarrow p$ c) $\neg p \rightarrow \neg q$ d) $\neg p \rightarrow q$	2
8	The binary relation $\{(1,1),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2)\}$ on the set $\{1,2,3\}$ is \qquad a) reflective, symmetric and transitive b) irreflexive, symmetric and transitive c) neither reflective, nor irreflexive but transitive d) irreflexive and antisymmetric	2
9	Consider the relation: $R^{\prime}(x, y)$ if and only if $x, y>0$ over the set of non-zero rational numbers, then R^{\prime} is \qquad a) not equivalence relation b) an equivalence relation c) transitive and asymmetry relation d) reflexive and antisymmetric relation	2
10	Let S be a set of $n>0$ elements. Let be the number B_{r} of binary relations on S and let B_{f} be the number of functions from S to S. The expression for B_{r} and B_{f}, in terms of n should be \qquad a) n^{2} and $2(n+1)^{2}$ b) n^{3} and $n^{(n+1)}$ c) n and $n^{(n+6)}$ d) $2^{\left(n^{*}\right)}$ and n^{n}	2
11	Consider the binary relation, $\mathrm{A}=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{b}=\mathrm{a}-1$ and a, b belong to $\{1,2,3\}\}$. The reflexive transitive closure of A is? a) $\{(a, b) \mid a>=b$ and a, b belong to $\{1,2,3\}\}$ b) $\{(a, b) \mid a>b$ and a, b belong to $\{1,2,3\}\}$ c) $\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}<=\mathrm{b}$ and a , b belong to $\{1,2,3\}\}$ d) $\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}=\mathrm{b}$ and a, b belong to $\{1,2,3\}\}$	2
12	A function is said to be \qquad if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f. a) One-to-many b) One-to-one c) Many-to-many d) Many-to-one	2
13	The inverse of function $f(x)=x^{3}+2$ is \qquad a) $f^{-1}(y)=(y-2)^{1 / 2}$ b) $f^{-1}(y)=(y-2)^{1 / 3}$ c) $f^{-1}(y)=(y)^{1 / 3}$ d) $f^{-1}(y)=(y-2)$	2

14	Let f and g be the function from the set of integers to itself, defined by $f(x)=2 x+1$ and $g(x)=3 x+4$. Then the composition of f and g is a) $6 x+9$ b) $6 x+7$ c) $6 x+6$ d) $6 x+8$	2
15	How many even 4 digit whole numbers are there? a) 1358 b) 7250 c) 4500 d) 3600	2
16	In a multiple-choice question paper of 15 questions, the answers can be A, B, C or D. The number of different ways of answering the question paper are \qquad a) 65536×4^{7} b) 194536×4^{5} c) 23650×4^{9} d) 11287435	2
17	How many five-digit numbers can be made from the digits 1 to 7 if repetition is allowed? a) 16807 b) 54629 c) 23467 d) 32354	2
18	In a 7-node directed cyclic graph, the number of Hamiltonian cycle is to be \qquad a) 728 b) 450 c) 360 d) 260	2
19	If each and every vertex in G has degree at most 23 then G can have a vertex colouring of \qquad a) 24 b) 23 c) 176 d) 54	2
20	If G is the forest with 54 vertices and 17 connected components, G has \qquad total number of edges. a) 38 b) 37 c) $17 / 54$ d) $17 / 53$	2

21	A non empty set A is termed as an algebraic structure a) with respect to binary operation * b) with respect to ternary operation ? c) with respect to binary operation + d) with respect to unary operation -	2
22	An algebraic structure \qquad is called a semigroup. a) ($\mathrm{P}, *$) b) $(\mathrm{Q},+$, *) c) $(P,+)$ d) $(+$, *)	2
23	A monoid is called a group if \qquad a) $(a * a)=a=(a+c)$ b) $\left(a^{*} c\right)=(a+c)$ c) $(a+c)=a$ d) $\left(a^{*} c\right)=\left(c^{*} a\right)=e$	2
24	A cyclic group is always \qquad a) abelian group b) monoid c) semigroup d) subgroup	2
25	$\{1, i,-i,-1\}$ is \qquad a) semigroup b) subgroup c) cyclic group d) abelian group	2

